## An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV

O. Adriani et al.
Nature 458, 607-609 (2 April 2009)

AstroNews
Phyllis Yen
2009/06/25
HEAG@NTHU





- Antiparticle of electron, charge: + I, spin: 1/2
- A positron is created





(b) in beta+ nuclear decay (called positron emission):

$${}^{11}_{6}C \rightarrow {}^{11}_{5}B + e^{+} + v_{e} + 0.96MeV$$

(c) Dark matter annihilation:

Dark matter particles (WIMPs)
+ (annihilation)

A variety of subatomic particles (electrons, positrons...etc)

## Positron: Where do they come from?

- Primary source: possible sources include
- (a) Pulsar-magnetosphere is a cosmic particle accelerator
- (b) Microquasars-relativistic jet emitting VHE gamma rays
- (c) dark matter annihilation-mechanism unclear
- Secondary source
- (a) Cosmic-ray nuclei (hydrogen protons or helium alpha particle)

INTERACT WITH

(a) Diffuse interstellar medium

Their spectral profile are different!!!



- Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics
- $10^9$  triggers, ~500 days observation:  $151672 e^{-1}$  and  $9430 e^{+1}$  within 1.5 100 GeV
- PAMELA measures the positron fraction:

$$\frac{\phi(\mathrm{e}^+)}{(\phi(\mathrm{e}^+) + \phi(\mathrm{e}^-))}$$

 A magnet spectrometer determines the rigidity and sign-of-charge of incident particles.

## The fraction of calorimeter energy as a function of deflection.



## Observation of positron fraction





- Solar wind modifies the energy spectra of cosmic rays in Solar System, especially on energies less than 10GeV.
- Depends on solar activity: sinusoidal time dependence with a period of 11 years.
- Complete solar cycle: 22 years, since the polarity changes every 11 years.
- Can explain the discrepancies in the lower energy branch (<10GeV)</li>



- The observed spectral profile of positron does not match that from a secondary production model.
- Consequently, the positron abundance may be due to

  Not yet able to distinguish between (a) and (b)
- (a) The magnetospheres of near-by pulsar: the first observation of positron production from near-by pulsars
- (b) Dark matter annihilations in the galactic halo: the first indirect evidence of dark matter particle annihilations

