A super-Earth transiting a nearby low-mass star Nature, Vol462, 2009 12 17 # WATER WORLD LARGER THAN EARTH ## MEarth Project - 8 independent automated telescope (with 0.4m-diameter mirrors) - Monitoring 2000 nearby M-dwarfs (0.1Me<M< 0.35Me)</p> - >search for transiting super-earth - Wave band : Near infrared(700~900nm) - GJ 1214b ## GJ 1214 #### Light curves change in radial velocity ## System parameters - Planetary density : - ~ 1.87 g/cm³ - Compared with earth : - $\sim 5.5 \text{ g/cm}^3$ - CoRoT-7b: - $\sim 5.6 \text{ g/cm}^3$ What is the composition? | Table 1 System parameters for GJ 1214 | | |--|---| | Parameter | Value | | Orbital period, P (days) | 1.5803925 ± 0.0000117 | | Times of centre of transit, T_c (HJD) | 2454964.944208 ± 0.000403 | | | $2454980.7479702 \pm 0.0000903$ | | | 2454983.9087558 ± 0.0000901 | | Discret/steered by out in D. (D. | 2454999.712703 ± 0.000126 | | Planet/star radius ratio, R _p /R _s | 0.1162 ± 0.00067 | | Scaled semimajor axis, a/R _s | 14.66 ± 0.41
0.354 ^{+0.061} _{-0.082} | | Impact parameter, b Orbital inclination, i (deg) | 0.354_0.082 | | Radial velocity semi-amplitude, K (m s ⁻¹) | 12.2 ± 1.6 | | Systemic velocity, γ (m s ⁻¹) | -21,100 ± 1,000 | | Orbital eccentricity, e | <0.27 (95% confidence) | | Stellar mass, Ms | $0.157 \pm 0.019 M_{\odot}$ | | Stellar radius, Rs | $0.2110 \pm 0.0097R_{\odot}$ | | Stellar density, ρ_s (kg m ⁻³) | 23,900 ± 2,100 | | Log of stellar surface gravity (CGS units), | 4.991 ± 0.029 | | $\log g_{\rm s}$ | | | Stellar projected rotational velocity, v sin i | <2.0 | | (km s ⁻¹) | | | Stellar parallax (mas) | 77.2 ± 5.4 | | Stellar photometry | | | V | 15.1 ± 0.6 | | 1 | 11.52 ± 0.1 | | J | 9.750 ± 0.024 | | H | 9.094 ± 0.024 | | K | 8.782 ± 0.020 | | Stellar luminosity, L _s | 0.00328 ± 0.00045L _☉ | | Stellar effective temperature, T _{eff} (K) | 3,026 ± 130 | | Planetary radius, R _p | 2.678 ± 0.13R⊕ | | Planetary mass, M _p | $6.55 \pm 0.98M_{\oplus}$ | | Planetary density, ρ_p (kg m ⁻³)
Planetary surface acceleration under gravity, | 1870 ± 400
8.93 ± 1.3 | | $g_{\rm p}$ (m s ⁻²) | 0.73 ± 1.3 | | Planetary equilibrium temperature, T_{eq} (K) | | | Assuming a Bond albedo of 0 | 555 | | Assuming a Bond albedo of 0.75 | 393 | | 7 5551111/g d bolld dibedo of 0.75 | 0,0 | ## Between earth & ice giants - Solid surface - → 50% of water by mass gaseous envelope Comparing masses and radii of transiting planets: ### Is it kin of our earth? Maybe not... ## Thank you