X-ray sources identification of Chandra data in NGC 6218

2008.04.17
Ting-Ni Lu
Institute of Astronomy, NTHU
Scientific Goal

- To identify the faint x-ray sources in the globular cluster system.
- To know the formation of the x-ray emission system.
X-ray Observation

- NGC 6218 was observed by Chandra ACIS-S on 2004 July 17 for about 27ks.
- The S3 chip of Chandra covers the whole half-mass radius of NGC 6218.
X-ray Observation

- FOV of Chandra ACIS-S
Data Reduction

• Reprocessing level=1 data to create a new level=2 data for analysis.

• Apply the newest calibration: remove cosmic rays after glow, remove bad pixel, revise the CCD response and good time interval (GTI).

• Eliminate high background count rate (count rate > 5 cps).
Data Reduction

- Filter the energy band: 0.3-7 keV
- The high energy particle background is fairly flat in the 2-7 keV range. However, it both rises sharply below the 0.3 keV mark and climbs by a factor of 8 between 7-10 keV.
Data Reduction

• Effective exposure time reduces from 26.9ks to 26.2ks.
Source Detection

• Software : wavdetect in CIAO 3.4
• Detection on four band : 0.3-1 keV(soft band), 1-2 keV(medium band), 2-7 keV(hard band), 0.3-7 keV.
• Parameter setting :
Sources Detection

• Sources list

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CX1(6)</td>
<td>16:47:20.12</td>
<td>-01:58:34.30</td>
<td>1.00</td>
<td>13.00</td>
<td>13.00</td>
<td>7.77E-015</td>
<td>1.12E+031</td>
</tr>
<tr>
<td>CX2(1)</td>
<td>16:47:15.72</td>
<td>-01:56:46.76</td>
<td>55.00</td>
<td>125.83</td>
<td>78.49</td>
<td>7.48E-014</td>
<td>1.07E+032</td>
</tr>
<tr>
<td>CX3</td>
<td>16:47:04.78</td>
<td>-01:57:15.14</td>
<td>13.00</td>
<td>36.00</td>
<td>28.47</td>
<td>2.23E-014</td>
<td>3.20E+031</td>
</tr>
<tr>
<td>CX5(7)</td>
<td>16:47:21.42</td>
<td>-01:55:21.27</td>
<td>11.00</td>
<td>28.00</td>
<td>10.00</td>
<td>1.41E-014</td>
<td>2.03E+031</td>
</tr>
<tr>
<td>CX6(3)</td>
<td>16:47:17.81</td>
<td>-01:57:22.58</td>
<td>0.73</td>
<td>4.00</td>
<td>2.86</td>
<td>2.22E-015</td>
<td>3.19E+030</td>
</tr>
<tr>
<td>CX7</td>
<td>16:47:14.51</td>
<td>-01:53:47.21</td>
<td>5.91</td>
<td>10.91</td>
<td>1.82</td>
<td>5.36E-015</td>
<td>7.69E+030</td>
</tr>
<tr>
<td>CX8(4)</td>
<td>16:47:19.93</td>
<td>-01:57:16.17</td>
<td>4.81</td>
<td>1.00</td>
<td>1.00</td>
<td>1.95E-015</td>
<td>2.81E+030</td>
</tr>
<tr>
<td>CX9(2)</td>
<td>16:47:18.43</td>
<td>-01:56:53.54</td>
<td>2.00</td>
<td>6.50</td>
<td>4.87</td>
<td>3.84E-015</td>
<td>5.51E+030</td>
</tr>
<tr>
<td>CX10</td>
<td>16:47:33.98</td>
<td>-01:53:11.63</td>
<td>40.89</td>
<td>107.01</td>
<td>77.77</td>
<td>6.51E-014</td>
<td>9.35E+031</td>
</tr>
<tr>
<td>CX11</td>
<td>16:47:28.06</td>
<td>-01:57:21.91</td>
<td>-0.15</td>
<td>0.00</td>
<td>8.83</td>
<td>2.53E-015</td>
<td>3.64E+030</td>
</tr>
<tr>
<td>CX12</td>
<td>16:47:18.92</td>
<td>-01:53:40.98</td>
<td>-0.21</td>
<td>1.89</td>
<td>0.68</td>
<td>6.74E-016</td>
<td>9.67E+029</td>
</tr>
<tr>
<td>CX13(5)</td>
<td>16:47:17.09</td>
<td>-01:58:45.36</td>
<td>1.00</td>
<td>2.96</td>
<td>-0.04</td>
<td>1.12E-015</td>
<td>1.61E+030</td>
</tr>
<tr>
<td>CX14</td>
<td>16:47:23.49</td>
<td>-01:52:37.46</td>
<td>3.74</td>
<td>3.48</td>
<td>4.22</td>
<td>3.29E-015</td>
<td>4.72E+030</td>
</tr>
<tr>
<td>CX15</td>
<td>16:47:13.57</td>
<td>-01:52:57.91</td>
<td>1.92</td>
<td>1.92</td>
<td>0.96</td>
<td>1.38E-015</td>
<td>1.98E+030</td>
</tr>
<tr>
<td>CX16</td>
<td>16:47:34.10</td>
<td>-01:55:59.60</td>
<td>1.62</td>
<td>4.44</td>
<td>2.81</td>
<td>2.55E-015</td>
<td>3.66E+030</td>
</tr>
</tbody>
</table>
Sources Detection
Hardness ratio and Spectral Fitting

• Most sources don’t have enough photon counts (less than 200 counts) to do the meaningful spectrum fitting.

• Calculate the hardness ratio can roughly tell the spectral feature of the sources.
Hardness ratio and Spectral Fitting

• CX2 spectrum
Hardness ratio and Spectral Fitting

- CX2 spectrum fitting parameter:
 - $w_{abs} \ nH = 0.290162 \pm 0.123834 \times 10^{22}$
 - powerlaw $\ PhoIndex = 2.16369 \pm 0.321999$
- Chi-Squared = 17.82 using 15 PHA bins.
- Reduced chi-squared = 1.485 for 12 degrees of freedom
- Null hypothesis probability = 1.211654×10^{-01}
Hardness ratio and Spectral Fitting

• Color-color diagram
Summary

• We detect 17 x-ray sources in the chandra data of NGC 6218. 7 of the 17 are within the half-mass radius of NGC 6218 or HST FOV. All of the 7 sources have low luminosity ~ 1E+31 erg/s.

• From color-color diagram, they are soft x-ray sources.

• We can not tell what kind of x-ray sources they are for now.
Future Work

• Compare the result of Chandra data to other x-ray data of NGC 6218.
• Find the counterpart of these x-ray sources in optical and to identify these sources.
• Compare the x-ray sources composition to other globular clusters.
References

• http://cxc.harvard.edu/ciao/
• http://physwww.mcmaster.ca/~harris/mwgc.dat

• THANK YOU!